1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
// ML implementation: TF-IDF + Logistic Regression for article filtering.
//
// Why title-only: Avoids content scraping overhead, titles are already informative.
// MinDF=2: Removes typos and rare terms that don't generalize.
// MaxDF=0.8: Removes common words that appear in >80% of documents.
// λ=0.001: Light L2 regularization to prevent overfitting on small datasets.
//
// Public API:
// - TFIDFVectorizer.Fit(): Learn vocabulary from documents
// - TFIDFVectorizer.Transform(): Convert documents to TF-IDF vectors
// - LogisticRegression.Fit(): Train classifier on vectors
// - CreateVectorizerFromModel(): Reconstruct vectorizer from saved model
// - PredictScore(): Score article using trained weights
package core
import (
"fmt"
"math"
"regexp"
"sort"
"strings"
)
// ============================================================================
// ╻ ╻┏━╸┏━╸╺┳╸┏━┓┏━┓╻┏━┓┏━╸┏━┓
// ┃┏┛┣╸ ┃ ┃ ┃ ┃┣┳┛┃┗━┓┣╸ ┣┳┛
// ┗┛ ┗━╸┗━╸ ╹ ┗━┛╹┗╸╹┗━┛┗━╸╹┗╸
// ============================================================================
var wordHyphenRegex = regexp.MustCompile("[^a-zA-Z0-9-]+")
// StopWords: Common words that don't help distinguish articles.
// Why: Reduces noise and improves model generalization.
var stopWords = map[string]struct{}{
// Single letters and symbols
"s": {}, "-": {}, "0": {}, "1": {}, "2": {}, "3": {}, "4": {}, "5": {}, "6": {}, "7": {}, "8": {}, "9": {},
// Common English stop words
"a": {}, "about": {}, "above": {}, "after": {}, "again": {}, "against": {}, "al": {}, "all": {}, "am": {}, "an": {}, "and": {}, "any": {}, "are": {}, "aren't": {}, "as": {}, "at": {}, "be": {}, "because": {}, "been": {}, "before": {}, "being": {}, "below": {}, "between": {}, "both": {}, "but": {}, "by": {}, "can't": {}, "cannot": {}, "could": {}, "couldn't": {}, "did": {}, "didn't": {}, "do": {}, "does": {}, "doesn't": {}, "doing": {}, "don't": {}, "down": {}, "during": {}, "each": {}, "et": {}, "few": {}, "for": {}, "from": {}, "further": {}, "had": {}, "hadn't": {}, "has": {}, "hasn't": {}, "have": {}, "haven't": {}, "having": {}, "he": {}, "he'd": {}, "he'll": {}, "he's": {}, "her": {}, "here": {}, "here's": {}, "hers": {}, "herself": {}, "him": {}, "himself": {}, "his": {}, "how": {}, "how's": {}, "i": {}, "i'd": {}, "i'll": {}, "i'm": {}, "i've": {}, "if": {}, "in": {}, "into": {}, "is": {}, "isn't": {}, "it": {}, "it's": {}, "its": {}, "itself": {}, "let's": {}, "me": {}, "more": {}, "most": {}, "mustn't": {}, "my": {}, "myself": {}, "no": {}, "nor": {}, "not": {}, "of": {}, "off": {}, "on": {}, "once": {}, "only": {}, "or": {}, "other": {}, "ought": {}, "our": {}, "ours": {}, "ourselves": {}, "out": {}, "over": {}, "own": {}, "same": {}, "shan't": {}, "she": {}, "she'd": {}, "she'll": {}, "she's": {}, "should": {}, "shouldn't": {}, "so": {}, "some": {}, "such": {}, "than": {}, "that": {}, "that's": {}, "the": {}, "their": {}, "theirs": {}, "them": {}, "themselves": {}, "then": {}, "there": {}, "there's": {}, "these": {}, "they": {}, "they'd": {}, "they'll": {}, "they're": {}, "they've": {}, "this": {}, "those": {}, "through": {}, "to": {}, "too": {}, "under": {}, "until": {}, "up": {}, "very": {}, "was": {}, "wasn't": {}, "we": {}, "we'd": {}, "we'll": {}, "we're": {}, "we've": {}, "were": {}, "weren't": {}, "what": {}, "what's": {}, "when": {}, "when's": {}, "where": {}, "where's": {}, "which": {}, "while": {}, "who": {}, "who's": {}, "whom": {}, "why": {}, "why's": {}, "with": {}, "won't": {}, "would": {}, "wouldn't": {}, "you": {}, "you'd": {}, "you'll": {}, "you're": {}, "you've": {}, "your": {}, "yours": {}, "yourself": {}, "yourselves": {},
}
type TFIDFVectorizer struct {
Vocabulary map[string]float64
OrderedVocab []string
NgramMin int
NgramMax int
MinDF int // Minimum document frequency (absolute)
MaxDF float64 // Maximum document frequency (ratio)
VocabCap int
}
func CreateVectorizerFromModel(model *ModelEnvelope) *TFIDFVectorizer {
return &TFIDFVectorizer{
Vocabulary: model.Vectorizer,
OrderedVocab: model.OrderedVocab,
}
}
// Learns vocabulary and IDF from documents
func (v *TFIDFVectorizer) Fit(documents []string) {
numDocs := len(documents)
docFreqs := make(map[string]int)
for _, doc := range documents {
unigrams := Tokenize(doc)
ngrams := generateNgrams(unigrams, v.NgramMin, v.NgramMax)
seenInDoc := make(map[string]struct{})
for _, ngram := range ngrams {
if _, seen := seenInDoc[ngram]; !seen {
docFreqs[ngram]++
seenInDoc[ngram] = struct{}{}
}
}
}
maxDocs := int(v.MaxDF * float64(numDocs))
filteredVocab := make(map[string]int)
for term, freq := range docFreqs {
if freq >= v.MinDF && freq <= maxDocs {
filteredVocab[term] = freq
}
}
if v.VocabCap > 0 && len(filteredVocab) > v.VocabCap {
type termFreq struct {
term string
freq int
}
terms := make([]termFreq, 0, len(filteredVocab))
for term, freq := range filteredVocab {
terms = append(terms, termFreq{term, freq})
}
sort.Slice(terms, func(i, j int) bool {
return terms[i].freq > terms[j].freq
})
cappedTerms := terms[:v.VocabCap]
filteredVocab = make(map[string]int, v.VocabCap)
for _, tf := range cappedTerms {
filteredVocab[tf.term] = tf.freq
}
}
v.OrderedVocab = make([]string, 0, len(filteredVocab))
for term := range filteredVocab {
v.OrderedVocab = append(v.OrderedVocab, term)
}
sort.Strings(v.OrderedVocab) // deterministic order
v.Vocabulary = make(map[string]float64, len(v.OrderedVocab))
for _, term := range v.OrderedVocab {
// IDF = log(total num of docs / num of docs with term)
idf := math.Log(float64(numDocs) / float64(filteredVocab[term]))
v.Vocabulary[term] = idf
}
}
// Converts documents to TF-IDF vectors using learned vocabulary
func (v *TFIDFVectorizer) Transform(documents []string) [][]float64 {
vectors := make([][]float64, len(documents))
for i, doc := range documents {
unigrams := Tokenize(doc)
ngrams := generateNgrams(unigrams, v.NgramMin, v.NgramMax)
vector := make([]float64, len(v.OrderedVocab))
if len(ngrams) > 0 {
// tf: term frequency (normalized count of each n-gram in document)
tf := make(map[string]float64)
for _, ngram := range ngrams {
tf[ngram]++
}
numNgrams := float64(len(ngrams))
for ngram, count := range tf {
tf[ngram] = count / numNgrams
}
for j, term := range v.OrderedVocab {
if tfValue, ok := tf[term]; ok {
// only score terms that were in our training vocabulary
if idfValue, inVocab := v.Vocabulary[term]; inVocab {
vector[j] = tfValue * idfValue
}
}
}
}
vectors[i] = vector
}
return vectors
}
func Tokenize(text string) []string {
text = strings.ToLower(text)
words := wordHyphenRegex.Split(text, -1)
tokens := make([]string, 0, len(words))
for _, word := range words {
if word == "" {
continue
}
if _, isStopWord := stopWords[word]; isStopWord {
continue
}
tokens = append(tokens, word)
}
return tokens
}
func generateNgrams(tokens []string, minN, maxN int) []string {
if minN <= 0 {
minN = 1
}
if maxN < minN {
maxN = minN
}
numTokens := len(tokens)
estimatedCap := 0
for n := minN; n <= maxN; n++ {
if numTokens >= n {
estimatedCap += numTokens - n + 1
}
}
ngrams := make([]string, 0, estimatedCap)
for n := minN; n <= maxN; n++ {
if numTokens < n {
continue
}
for i := 0; i <= numTokens-n; i++ {
ngrams = append(ngrams, strings.Join(tokens[i:i+n], " "))
}
}
return ngrams
}
// ============================================================================
// ┏━╸╻ ┏━┓┏━┓┏━┓╻┏━╸╻┏━╸┏━┓
// ┃ ┃ ┣━┫┗━┓┗━┓┃┣╸ ┃┣╸ ┣┳┛
// ┗━╸┗━╸╹ ╹┗━┛┗━┛╹╹ ╹┗━╸╹┗╸
// ============================================================================
// Binary logistic regression with L2 regularization
// Bias term stored separately (not regularized)
type LogisticRegression struct {
LearningRate float64
Lambda float64 // L2 regularization parameter
Iterations int
Tolerance float64 // Convergence tolerance on loss improvement
}
// validate checks and clamps hyperparams to reasonable bounds.
func (lr *LogisticRegression) Validate() *LogisticRegression {
const (
defaultLearningRate = 0.5
defaultIterations = 500
defaultTolerance = 0.000001
)
if lr.LearningRate <= 0 {
lr.LearningRate = defaultLearningRate
}
if lr.LearningRate > 10 {
lr.LearningRate = 10.0
}
if lr.Lambda < 0 {
lr.Lambda = 0.0
}
if lr.Iterations <= 0 {
lr.Iterations = defaultIterations
}
if lr.Tolerance <= 0 {
lr.Tolerance = defaultTolerance
}
return lr
}
// Fit trains via SGD with L2 regularization on feature weights (not bias).
// Class weights reweight samples; unused in our pipeline (we downsample instead).
// Returns weights with bias as last element.
func (lr *LogisticRegression) Fit(vectors [][]float64, labels []float64, classWeights map[float64]float64) ([]float64, error) {
if len(vectors) == 0 {
return nil, fmt.Errorf("cannot train on empty dataset")
}
if len(vectors) != len(labels) {
return nil, fmt.Errorf(
"mismatch between number of vectors (%d) and labels (%d)",
len(vectors),
len(labels),
)
}
for i, y := range labels {
if y != 0 && y != 1 {
return nil, fmt.Errorf("invalid label at %d: %v (expected 0 or 1)", i, y)
}
}
numFeatures := len(vectors[0])
if numFeatures == 0 {
return nil, fmt.Errorf("cannot train with zero-length feature vectors")
}
for i := 1; i < len(vectors); i++ {
if len(vectors[i]) != numFeatures {
return nil, fmt.Errorf(
"inconsistent feature vector length at index %d: got %d, expected %d",
i,
len(vectors[i]),
numFeatures,
)
}
}
useUniformWeights := classWeights == nil
if useUniformWeights {
classWeights = map[float64]float64{0.0: 1.0, 1.0: 1.0}
}
numSamples := float64(len(vectors))
var totalWeight float64
if useUniformWeights {
totalWeight = numSamples
} else {
for _, y := range labels {
totalWeight += classWeights[y]
}
}
if totalWeight == 0 {
totalWeight = numSamples // Fallback
}
weights := make([]float64, numFeatures)
var bias float64
prevLoss := math.MaxFloat64
for i := 0; i < lr.Iterations; i++ {
gradWeights := make([]float64, numFeatures)
var gradBias float64
var currentLoss float64
for j, x := range vectors {
y := labels[j]
sampleWeight := classWeights[y]
z, err := dot(weights, x)
if err != nil {
return nil, fmt.Errorf("error calculating dot product for vector %d: %w", j, err)
}
p := Sigmoid(z + bias)
// Compute prediction error. This term gets multiplied by each feature value
// to accumulate gradients (higher error pushes weights harder).
errTerm := p - y
for k := 0; k < numFeatures; k++ {
gradWeights[k] += sampleWeight * errTerm * x[k]
}
gradBias += sampleWeight * errTerm
cp := clamp(p)
currentLoss += sampleWeight * (-(y*math.Log(cp) + (1-y)*math.Log(1-cp)))
}
// Update weights with L2 regularization (only on feature weights, not bias).
// This pulls weights toward zero, preventing overfitting on small datasets.
for k := 0; k < numFeatures; k++ {
regularizedGrad := (gradWeights[k] / totalWeight) + (lr.Lambda * weights[k])
weights[k] -= lr.LearningRate * regularizedGrad
}
gradBias /= totalWeight
bias -= lr.LearningRate * gradBias
// Check convergence: if loss change is below tolerance, we're done.
// We include the L2 penalty in total loss to assess true convergence.
avgLoss := currentLoss / totalWeight
var l2Penalty float64
for _, w := range weights {
l2Penalty += w * w
}
totalLoss := avgLoss + 0.5*lr.Lambda*l2Penalty
if math.Abs(prevLoss-totalLoss) < lr.Tolerance {
break
}
prevLoss = totalLoss
}
// bias is stored as the last element
return append(weights, bias), nil
}
// PredictScore computes the probability for a single vec given weights.
// the last element of weights is the bias.
func PredictScore(vector []float64, weights []float64) (float64, error) {
if len(weights) == 0 {
return 0, fmt.Errorf("weights cannot be empty")
}
if len(vector) != len(weights)-1 {
return 0, fmt.Errorf(
"vector length mismatch: expected %d features, got %d",
len(weights)-1,
len(vector),
)
}
for i, v := range vector {
if math.IsNaN(v) || math.IsInf(v, 0) {
return 0, fmt.Errorf("invalid value at vector[%d]: %v", i, v)
}
}
for i, w := range weights {
if math.IsNaN(w) || math.IsInf(w, 0) {
return 0, fmt.Errorf("invalid value at weights[%d]: %v", i, w)
}
}
featureWeights := weights[:len(weights)-1]
bias := weights[len(weights)-1]
z, err := dot(featureWeights, vector)
if err != nil {
return 0, fmt.Errorf("failed to compute dot product: %w", err)
}
return Sigmoid(z + bias), nil
}
// ============================================================================
// ┏┳┓┏━┓╺┳╸╻ ╻┏━┓
// ┃┃┃┣━┫ ┃ ┣━┫┗━┓
// ╹ ╹╹ ╹ ╹ ╹ ╹┗━┛
// ============================================================================
func Sigmoid(z float64) float64 {
if z >= 0 {
return 1.0 / (1.0 + math.Exp(-z))
}
ez := math.Exp(z)
return ez / (1.0 + ez)
}
func dot(a, b []float64) (float64, error) {
if len(a) != len(b) {
return 0, fmt.Errorf("vector length mismatch: %d != %d", len(a), len(b))
}
var sum float64
for i := range a {
sum += a[i] * b[i]
}
return sum, nil
}
func clamp(p float64) float64 {
const probabilityClamp = 1e-15
if p < probabilityClamp {
return probabilityClamp
}
if p > 1.0-probabilityClamp {
return 1.0 - probabilityClamp
}
return p
}
|