aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSam Scholten2025-10-28 13:26:16 +1000
committerSam Scholten2025-10-28 13:27:08 +1000
commit2c382a14d963b18708ae1c9a0756b0c17d66e01a (patch)
tree8d0e8125457920fee9685f8705b4a0ec3c69ea5e
parentb13198edb3120826c006aeca1414e109cec66ec2 (diff)
downloadscopekit-2c382a14d963b18708ae1c9a0756b0c17d66e01a.tar.gz
scopekit-2c382a14d963b18708ae1c9a0756b0c17d66e01a.zip
remove monotonicity checkv1.0.2
-rw-r--r--pyproject.toml2
-rw-r--r--src/scopekit/data_manager.py84
2 files changed, 43 insertions, 43 deletions
diff --git a/pyproject.toml b/pyproject.toml
index 888af00..e0b5d54 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[project]
name = "scopekit"
-version = "1.0.1"
+version = "1.0.2"
description = "General-purpose oscilloscope plotting components."
authors = [{ name = "Sam Scholten", email = "s.scholten@uq.edu.au" }]
requires-python = ">=3.8"
diff --git a/src/scopekit/data_manager.py b/src/scopekit/data_manager.py
index 2f13ce3..8d337ad 100644
--- a/src/scopekit/data_manager.py
+++ b/src/scopekit/data_manager.py
@@ -206,20 +206,20 @@ class TimeSeriesDataManager:
warnings.warn(f"Initialising trace {trace_idx} with empty arrays.", UserWarning)
return
- # Check time array is monotonic
- if len(t) > 1:
- # Use a small epsilon for floating-point comparison
- tolerance = 1e-9
- if not np.all(np.diff(t) > tolerance):
- problematic_diffs = np.diff(t)[np.diff(t) <= tolerance]
- warnings.warn(
- f"Time array for trace {trace_idx} is not strictly monotonic increasing within tolerance {tolerance}. "
- f"Problematic diffs (first 10): {problematic_diffs[:10]}. "
- f"This may affect analysis results.", UserWarning
- )
+ # # Check time array is monotonic
+ # if len(t) > 1:
+ # # Use a small epsilon for floating-point comparison
+ # tolerance = 1e-9
+ # if not np.all(np.diff(t) > tolerance):
+ # problematic_diffs = np.diff(t)[np.diff(t) <= tolerance]
+ # warnings.warn(
+ # f"Time array for trace {trace_idx} is not strictly monotonic increasing within tolerance {tolerance}. "
+ # f"Problematic diffs (first 10): {problematic_diffs[:10]}. "
+ # f"This may affect analysis results.", UserWarning
+ # )
# Check for non-uniform sampling
- self._check_uniform_sampling(t, trace_idx)
+ # self._check_uniform_sampling(t, trace_idx)
@property
def overlay_lines(self) -> List[Dict[str, Any]]:
@@ -394,33 +394,33 @@ class TimeSeriesDataManager:
return t_masked, x_masked
- def _check_uniform_sampling(self, t: np.ndarray, trace_idx: int = 0) -> None:
- """
- Check if time array is uniformly sampled and issue warnings if not.
-
- Parameters
- ----------
- t : np.ndarray
- Time array to check.
- trace_idx : int, default=0
- Index of the trace being checked (for warning messages).
- """
- if len(t) < 3:
- return # Not enough points to check uniformity
-
- # Calculate time differences
- dt = np.diff(t)
-
- # Calculate statistics
- dt_mean = np.mean(dt)
- dt_std = np.std(dt)
- dt_cv = dt_std / dt_mean if dt_mean > 1e-15 else 0 # Coefficient of variation
-
- # Check for significant non-uniformity
- # CV > 0.1 (10%) indicates potentially problematic non-uniformity
- if dt_cv > 0.1:
- warnings.warn(
- f"Severe non-uniform sampling detected in trace {trace_idx}: "
- f"mean dt={dt_mean:.3e}s, std={dt_std:.3e}s, CV={dt_cv:.2%}. "
- f"May affect analysis results.", UserWarning
- )
+# def _check_uniform_sampling(self, t: np.ndarray, trace_idx: int = 0) -> None:
+# """
+# Check if time array is uniformly sampled and issue warnings if not.
+#
+# Parameters
+# ----------
+# t : np.ndarray
+# Time array to check.
+# trace_idx : int, default=0
+# Index of the trace being checked (for warning messages).
+# """
+# if len(t) < 3:
+# return # Not enough points to check uniformity
+#
+# # Calculate time differences
+# dt = np.diff(t)
+#
+# # Calculate statistics
+# dt_mean = np.mean(dt)
+# dt_std = np.std(dt)
+# dt_cv = dt_std / dt_mean if dt_mean > 1e-15 else 0 # Coefficient of variation
+#
+# # Check for significant non-uniformity
+# # CV > 0.1 (10%) indicates potentially problematic non-uniformity
+# if dt_cv > 0.1:
+# warnings.warn(
+# f"Severe non-uniform sampling detected in trace {trace_idx}: "
+# f"mean dt={dt_mean:.3e}s, std={dt_std:.3e}s, CV={dt_cv:.2%}. "
+# f"May affect analysis results.", UserWarning
+# )